A Polynomial Time Algorithm for Vertex Coloring Problem
نویسندگان
چکیده
منابع مشابه
Polynomial Cases for the Vertex Coloring Problem
The computational complexity of the Vertex Coloring problem is known for all hereditary classes of graphs defined by forbidding two connected five-vertex induced subgraphs, except for seven cases. We prove the polynomial-time solvability of four of these problems: for (P5, dart)-free graphs, (P5, banner)-free graphs, (P5, bull)-free graphs, and (fork, bull)-free graphs.
متن کاملA new Simulated Annealing algorithm for the robust coloring problem
The Robust Coloring Problem (RCP) is a generalization of the well-known Graph Coloring Problem where we seek for a solution that remains valid when extra edges are added. The RCP is used in scheduling of events with possible last-minute changes and study frequency assignments of the electromagnetic spectrum. This problem has been proved as NP-hard and in instances larger than 30 vertices, meta-...
متن کاملa new simulated annealing algorithm for the robust coloring problem
the robust coloring problem (rcp) is a generalization of the well-known graph coloring problem where we seek for a solution that remains valid when extra edges are added. the rcp is used in scheduling of events with possible last-minute changes and study frequency assignments of the electromagnetic spectrum. this problem has been proved as np-hard and in instances larger than 30 vertices, meta-...
متن کاملPolynomial Time Efficient Construction Heuristics for Vertex Separation Minimization Problem
Vertex Separation Minimization Problem (VSMP) consists of finding a layout of a graph G = (V,E) which minimizes the maximum vertex cut or separation of a layout. It is an NPcomplete problem in general for which metaheuristic techniques can be applied to find near optimal solution. VSMP has applications in VLSI design, graph drawing and computer language compiler design. VSMP is polynomially sol...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korea Society of Computer and Information
سال: 2011
ISSN: 1598-849X
DOI: 10.9708/jksci.2011.16.7.085